APPLICATION OF LIFE KINETIK IN THE PROCESS OF TEACHING TECHNICAL ACTIVITIES TO YOUNG FOOTBALL PLAYERS

Henryk Duda

Department of Theory and Methodology of Team Sports and Recreational Games, Institute of Sport Sciences, Faculty of Physical Education, University School of Physical Education, Krakow, Poland

Key words: intellectualization of education, training effectiveness, creativity.

Summary

Aim of the study. To verify the concept of effective teaching of young association football players based on the Life Kinetik creative method.

The fundamental research question asked was: does the implementation of the Life Kinetik method into association football training increase the effectiveness of teaching football?

Material and methods. The study of the impact of the Life Kinetik creative method on the effectiveness of learning football was conducted in the years 2010-2014. The study involved 48 young football players (in the younger junior category), studying at a sports school in Krakow. To assess their disposition for the game, the following tests were conducted: special knowledge test \(r = 0.87 \); mobility test \(r = 0.87 \) and didactic games test \(r = 0.86 \).

Results and conclusions. The results of the study show that teaching association football by means of the Life Kinetik method increases the motor effectiveness of players, and searching for reserves in the sphere of mental disposition of players can help to increase the effectiveness of their training.

Introduction

Life Kinetik is a modern technical action training programme based on the formation of a locomotive habit paired with high activity of the nervous system – especially the athlete’s intellect. The method has been spread (in training football) by Horst Lutz, a German association football coach. The essence of the method lies in combining different motor activities (often disrupting basic movement techniques) which activate and shape associative cortical fields and, at the same time, improve the efficiency of an athlete’s thought processes. This method not only shapes the movement technique but activates, first and foremost, the cortical representations for the movements (which are usually used to a negligible degree) [1].

Training the muscles without activating the associative cortical fields (i.e. at the level of controlling the lower representations of centres in the central nervous system) shapes motor habits that are mechanical in character. They can be fast, accurate even (resembling animal training), however, they remain imitative [2,3]. By training the muscles and activating the associative cortical fields, more control may be gained over muscles in the way the movement is executed. Thus, we can execute intentional movements more efficiently, and adjust them to the decision to perform the movement. [4] Such an activity – adjusting movement to the situation – is defining for a sports game. It can therefore be concluded that the Life Kinetik method shapes cortical representations of a higher level (the development of associative fields,
improvement in nerve connections in the brain), allowing conscious execution of the movement, as opposed to mechanical execution. Using this method in football training prepares players to act rationally and make apt decisions during the game.

Using Life Kinetik benefits health through a broad, tailored training programme – our brains function better through newly formed synapses [1]. The method is suited both for children and elderly people, for individual and team sports players.

The Life Kinetik method is being popularized in Western Europe (Germany, the Netherlands, France, Spain, to name just a few). The programme is increasingly successful and is becoming more and more significant in association football training as it effectively prepares players for the peculiarity of the game which requires not only great technique but, above all, performing motor activities in constantly changing conditions to reach the objective of the game [1].

Mental training (i.e. activating mental faculties) can have decisive influence on increasing the effectiveness of a player’s actions aimed at the realisation of objectives of motor activities in a sports game. It has been proven that the better the athlete knows the activities and the application there of (in other words, the more consciously they participate in the action), the easier it is for them to perceive particular situations in the game and effectively implement the appropriate objectives [3, 5].

Assuming that the effective development of motor habits in sports games takes place at the semantic-motor level [6, 3], it is believed that teaching the Life Kinetik method (which activates mental faculties) will increase the effectiveness of training in young players.

Study aim, questions and hypotheses

The research in the present study is utilitarian in character, for its main purpose is to modify the existing concept of methodology of teaching sports games with association football as the example. The method is connected with activating mental faculties of the player and can greatly improve their motor performance [1].

To confirm this thesis, institutions training young talented players (adepts of football) were put under scrutiny.

The following questions have been posed in the research:

- Does the implementation of the Life Kinetik method into teaching football techniques increase its effectiveness?
- Does the use of the Life Kinetik method in teaching football increase the in-game effectiveness of young football players?
- Can football training be improved by means of implementing the Life Kinetik method?

Demonstrating these relationships will allow one to look for reserves in other fields of influence in the player’s training. Solving this problem can result in large educational and health-related benefits since the effectiveness of such a mode of teaching increases the efficiency of the player and reduces the physical overload in sports training, which, in turn, reduces the risk of exploitation of the athlete’s body.

Given the above, the following hypothesis has been put forward:

- the Life Kinetik method improves the performance of motor activities of young football players,
- improving the training process by introducing the Life Kinetik method to technique training helps to increase the in-game effectiveness of players.

Material and methods

To assess the efficiency of learning and teaching special motor skills, the method of pedagogical experiment was used; the technique of parallel groups (experimental “E” and control “C”) were used [7].

In experimental research, the independent variable comprised the way of processing and transmitting information using the Life Kinetik method based on mental action taken by players in the process of teaching motor activities (the so-called special technique).

The dependent variables comprised the quantifiable results concerning the player’s level of mastery of technical activities in isolated conditions and in the game.

The continual research was carried out on an annual basis (over a four-year span, from 2010 to 2014) among the students of the School of Sports Champion-ship (Szkoła Mistrzostwa Sportowego) in Krakow. The subjects constituted a younger juniors group – 14-15 years of age.

The continual research in four annual training cycles included 48 young participants, organised and divided into two subgroups: the experimental (E) and control (C) group, numbering six players each.

Throughout the course of the study, the experimental group participated in the experimental training unit once a week – a 90-minute class combining theoretical and practical elements (Fig. 1). The classes were conducted using the Life Kinetik method for teaching techniques and were characterized by higher mentalisation of the exercises (i.e. by mental commitment, concentration and attention divisibility).

In sum, 75 training lessons were conducted using the Life Kinetik method for each experimental group in the annual training cycle.
Topic: Improving change in direction while moving with the ball in different situations.

Knowledge: The pupils should be informed that changing direction is one of the most important elements of football; variations of changing direction, its effectiveness in different situations and proper use of the element should be commented upon.

Number of participants: 6
Duration: 90 min
Equipment: ball × 16, marker × 8, cone × 20, ring × 30

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CONTENT</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>
| Part One – Introduction
Warm-up – 25 minutes. | The pupils line up; a formal greeting.
A summary of the techniques to change direction efficiently.
A: General exercises with balls (a warm-up)
B: Exercises pertaining to the topic of the lesson
Exercise description:
Ex. 1.
Each pupil has a ball, they keep distance between one another. They lead the ball closely, in limited space. A one whistle signal means changing direction by stopping the ball with one’s sole and dragging it backwards, then turning. Two whistles mean changing direction by playing the ball with the inner part of the foot underneath one’s body, then turning. Three whistles mean leading the ball without any reaction.
Ex. 2. (Fig. 1.)
Two markers are placed in a line with a 6-metre distance between them. The pupils lead the ball towards the marker, in front of which they drag the ball backwards with their right foot, make a turn to the right and continue leading the ball with their left foot. Then they head to the other marker, where they do the mirror image of the exercise.
Fig. 1. Individual exercise [1]
Presentation and explanation of correct change in direction. Special emphasis put on resuming of leading the ball, when the player should be in a good position to continue the exercise and hold their head high to observe and control the pitch. Continuous control of the ball is of high importance as it prevents collisions with other exercising pupils. Emphasis is put on accuracy. Exercises mixed with stretching in regular intervals. | |
| **Ex. 3.** (Fig. 2.) | The markers make up rectangles (about 4 × 6 metres). 2 pupils for each rectangle; pupils lead the ball outside the rectangle and along the diagonals. When they reach the marker, they change direction using the outer/inner part of their foot (both right and left).
Fig. 2. Individual exercise [1] | |

Fig. 1. Example of lesson structure in teaching movement activities (technical) using the Life Kinetik method
Part Two – Main part – 55 minutes.

Description:

Ex. 4. (Fig. 3.)

48 pieces of paper are marked on both sides. Side A: a number from 1 to 4 or a name of one of four colours (red, yellow, blue or green); Side B: a number from 1 to 8 or a name of one of eight colours (red, yellow, green, orange, purple, brown, navy blue). The pieces of paper are then put loosely on the pitch, about 5 metres apart. Pupils perform the following exercises, depending on their skills:

Exercise 1: A turn to the right using the outer side of the right foot.
Exercise 2: A turn to the left using the inner side of the right foot.
Exercise 3: A turn to the left using the outer side of the left foot.
Exercise 4: A turn to the right using the inner side of the left foot.

Pupils lead the ball slowly, then make a turn around a given piece of paper. The number or the name of the colour define which exercise to do, namely:

1 and 5, yellow and brown = Ex. 1,
2 and 6, red and purple = Ex. 2,
3 and 7, green and navy blue = Ex. 3,
4 and 8, blue and orange = Ex. 4.

Ex. 5. (Fig. 4.)

On a 15x15 m field, six conjoined squares (side – 5 metres) are made using the markers. In case the players outnumber the squares, more of them can stand in one square, along the diagonal.

The pupils lead the ball to a given marker and make a 90-degree turn to the next marker. The change in direction is performed with the use of a given technique, e.g.:

– the outer part of the right foot to the right where it is taken by the outer side of the left foot, and then, analogously, to the other side,
– the inner part of the left foot to the right where it is taken by the outer side of the right foot, and then, analogously, to the other side,
– the side of the left foot sole to the right and leading begins with the outer side of the right foot, then, analogously, to the other side.

The coach decides how the players should change the direction.

During exercises, the players are expected to be highly active and accurate. Emphasis is put on keeping the head high and observing the situation on the pitch while keeping control of the ball. The exercises require immense focus and concentration in each move. The exercises form peripheral vision, spatial orientation and foster the efficiency of intellectual processes.
The players are divided into two teams; the field, made up with the use of markers, is 15 × 15 metres. On each side there are two markers in different colours, about a metre from the field.

The ball is lead inside the field. One of the players is chosen to pick the marker that the teams must encircle and return to the field without disturbing one another – they say its colour out loud. The team to find themselves back in the field first scores a point. Then, the person to choose the marker changes.

Ex. 6. (Fig. 5.)

The field is marked out to be 15 × 15 metres. There is a 1 × 1 metre square in each corner, each in a different colour. The discs are placed freely on the field. All the players are divided into equally numerous groups, one for each square (“base”). Each colour is associated, then, with a name of a fruit, e.g. red = apple, yellow = banana, green = pear, orange = orange. On signal, a marker must be brought single-handedly, as quickly as possible. The players let go of the marker they are holding with each new signal and run to get a new one. The team that collects the largest number of markers wins.

If all markers have been collected, the game is reversed. Once again, the base must be emptied as quickly as possible, however, markers from one’s own base cannot be taken. To win, the number of markers in other bases must be constantly traced.

The rules are not introduced from the onset; they are introduced with regard to what happens during the exercises, e.g.:

– the markers may be passed between team members
– the markers may be stolen from the opposing teams
– they may be taken from other bases
– one’s own base may be defended
– the enemy can be blocked
– the ball may be knocked out of the enemy’s hands

Ex. 7. (Fig. 6.)

The players are divided into two teams; the field, made up with the use of markers, is 15 × 15 metres. On each side there are two markers in different colours, about a metre from the field.

The ball is lead inside the field. One of the players is chosen to pick the marker that the teams must encircle and return to the field without disturbing one another – they say its colour out loud. The team to find themselves back in the field first scores a point. Then, the person to choose the marker changes.

Ex. 6. (Fig. 5.)

The players are divided into two teams; the field, made up with the use of markers, is 15 × 15 metres. On each side there are two markers in different colours, about a metre from the field.

The ball is lead inside the field. One of the players is chosen to pick the marker that the teams must encircle and return to the field without disturbing one another – they say its colour out loud. The team to find themselves back in the field first scores a point. Then, the person to choose the marker changes.

Ex. 7. (Fig. 6.)

The field is marked out to be 15 × 15 metres. There is a 1 × 1 metre square in each corner, each in a different colour. The discs are placed freely on the field. All the players are divided into equally numerous groups, one for each square (“base”). Each colour is associated, then, with a name of a fruit, e.g. red = apple, yellow = banana, green = pear, orange = orange. On signal, a marker must be brought single-handedly, as quickly as possible. The players let go of the marker they are holding with each new signal and run to get a new one. The team that collects the largest number of markers wins.

If all markers have been collected, the game is reversed. Once again, the base must be emptied as quickly as possible, however, markers from one’s own base cannot be taken. To win, the number of markers in other bases must be constantly traced.

The rules are not introduced from the onset; they are introduced with regard to what happens during the exercises, e.g.:

– the markers may be passed between team members
– the markers may be stolen from the opposing teams
– they may be taken from other bases
– one’s own base may be defended
– the enemy can be blocked
– the ball may be knocked out of the enemy’s hands

Ex. 6. (Fig. 5.)

The players are divided into two teams; the field, made up with the use of markers, is 15 × 15 metres. On each side there are two markers in different colours, about a metre from the field.

The ball is lead inside the field. One of the players is chosen to pick the marker that the teams must encircle and return to the field without disturbing one another – they say its colour out loud. The team to find themselves back in the field first scores a point. Then, the person to choose the marker changes.

Ex. 7. (Fig. 6.)

The field is marked out to be 15 × 15 metres. There is a 1 × 1 metre square in each corner, each in a different colour. The discs are placed freely on the field. All the players are divided into equally numerous groups, one for each square (“base”). Each colour is associated, then, with a name of a fruit, e.g. red = apple, yellow = banana, green = pear, orange = orange. On signal, a marker must be brought single-handedly, as quickly as possible. The players let go of the marker they are holding with each new signal and run to get a new one. The team that collects the largest number of markers wins.

If all markers have been collected, the game is reversed. Once again, the base must be emptied as quickly as possible, however, markers from one’s own base cannot be taken. To win, the number of markers in other bases must be constantly traced.

The rules are not introduced from the onset; they are introduced with regard to what happens during the exercises, e.g.:

– the markers may be passed between team members
– the markers may be stolen from the opposing teams
– they may be taken from other bases
– one’s own base may be defended
– the enemy can be blocked
– the ball may be knocked out of the enemy’s hands

Ex. 6. (Fig. 5.)

The players are divided into two teams; the field, made up with the use of markers, is 15 × 15 metres. On each side there are two markers in different colours, about a metre from the field.

The ball is lead inside the field. One of the players is chosen to pick the marker that the teams must encircle and return to the field without disturbing one another – they say its colour out loud. The team to find themselves back in the field first scores a point. Then, the person to choose the marker changes.

Ex. 7. (Fig. 6.)

The field is marked out to be 15 × 15 metres. There is a 1 × 1 metre square in each corner, each in a different colour. The discs are placed freely on the field. All the players are divided into equally numerous groups, one for each square (“base”). Each colour is associated, then, with a name of a fruit, e.g. red = apple, yellow = banana, green = pear, orange = orange. On signal, a marker must be brought single-handedly, as quickly as possible. The players let go of the marker they are holding with each new signal and run to get a new one. The team that collects the largest number of markers wins.

If all markers have been collected, the game is reversed. Once again, the base must be emptied as quickly as possible, however, markers from one’s own base cannot be taken. To win, the number of markers in other bases must be constantly traced.

The rules are not introduced from the onset; they are introduced with regard to what happens during the exercises, e.g.:

– the markers may be passed between team members
– the markers may be stolen from the opposing teams
– they may be taken from other bases
– one’s own base may be defended
– the enemy can be blocked
– the ball may be knocked out of the enemy’s hands
In the other group (the control group), the teaching process was carried out with the use of traditional methods. The same programme of teaching techniques was implemented, albeit without the influence of the Life Kinetik method.

The research was conducted in two stages. In the first stage – preliminary studies (pre-tests) were made to determine the base values and to select two research subgroups that would be as similar as possible (that is, with no statistically significant differences) in terms of the level of expertise and motor abilities. The groups were selected based on organised selection [3] – the players were classified using rank tables. In the second stage, the studies were repeated (post-tests); they tested the knowledge, motor abilities and efficiency of technical action both in isolated conditions and during the game.

Teaching, both in the experimental and control group, was based on the following assumptions:

1. The didactic objectives for the classes were identical.
2. The number of classes was the same for both the “E” and “C” group.
3. The duration of the class was the same in both groups (90 minutes).
4. Selection of players for training groups took into account similar age, similar level of motor abilities, technical skills and knowledge of the game (differences statistically insignificant).
5. The difference in didactic proceeding between the experimental group and control group was the way of teaching motor activities which took into account the Life Kinetik method (in the experimental group).
6. In the annual cycle of training, 75 more training units were used for practical teaching (WITHOUT the use of the Life Kinetik method) in the control groups than in the experimental groups.
7. In the annual cycle of training, 75 more training units were used for practical teaching (WITH the use of

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CONTENT</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 6. (cont.)</td>
<td>Static stretching. Each player comes up with an exercise for the group.</td>
<td>The pair who finishes the task first wins.</td>
</tr>
<tr>
<td>Part Three – Closing part – 10 minutes.</td>
<td>Juggling in pairs, with the increasing number of contacts with the ball. The first player hits the ball once, the other must bounce it before returning (two contacts), the first player has three contacts and so on. The contacts are counted, from 1 to 10, and then from 10 to 1.</td>
<td></td>
</tr>
<tr>
<td>Fig. 7. Outline of the exercise (laid-back manner) [1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Application of life kinetik in the process of teaching technical activities to young football players

In the course of the experiment, the following was assumed for both the “E” and “C” group:
1. That the programme assumed would be realised to the letter.
2. That the classes would be conducted by the same trainers.
3. That the classes would be attended by the same pupils (players). In both groups, subjects with the same overall attendance were considered for calculating the results of the study (the overall attendance in the groups amounted to 91%).
4. That the classes’ intensity in both groups would be the same (aerobic and mixed changes for teaching individual and group actions in strict terms; mixed and anaerobic changes for teaching by playing the game).
5. That teaching of technical activities in both groups would be in accordance with the training programme of SMS-PN in Krakow.

The experimental training made use of intellectual teaching of motor activities (special techniques) – the Life Kinetik method.

The purpose of the training was to form a level of motor image or an idea of the taught motion technique. In the process of intellectual teaching, verbal and visual methods (treated as didactic reinforcement) were used, which took into account the stages of teaching association football [3]:

To check the knowledge of football players’ motor activities, a standardised (t = 0.95, r = 0.87) technical knowledge test was used [3]; the test contained closed-ended, open-ended and synoptic problem questions which, just as on the field, deal with the alternatives to choose from while performing a movement. Questions concerned the regularities of (technical) motor activities and took into account movement analysis, biomechanical principles and the rules for effective actions during the game (Fig. 2).

A standardised test (t = 0.88, r = 0.87) for measuring technical (special) skills was used to evaluate the mobility of young players [3]. The test used a selection of technical skill trials which tested ball handling (juggling with legs and the head), leading the ball while slaloming, hitting the ball with the head and the leg for distance, the accuracy of a long pass, the accuracy of a hit to the ball (i.e. a shot to a designated part of the goal).

The evaluation of players’ actions during the game (both defensive and offensive) was made using objective

Fig. 2. Example task in knowledge of movement activity test [8]. The photos show the player’s movement sequences when hitting the ball with straight instep.
sheets of observation ($t = 0.93, r = 0.86$) in the 3 vs. 3 simulation games, in which team members, selected in an organised manner (according to their ranks for special skills) were evaluated by competent judges [3].

The assessment of technical skills in isolated conditions and in the simulation game was converted into a standardised 10-point scale (point tables). The experimental teaching was conducted by trainers from SMS-PN in Krakow, with the cooperation and supervision of the Department of Theory and Methodology of Football at the University School of Physical Education in Krakow.

When evaluating the assessments of the studied groups, what was analysed was the amount of information about motor activities mobility of a football player.

For calculating the results of the study, basic statistical operations were used: arithmetic mean, standard deviation, Student’s t-test which determined the level of significance of differences [9].

Results

The research assumptions of the paper were that the players participating in experimental interactions (creative teaching with the use of the Life Kinetik method in teaching technical actions) achieve better results as far as expertise, mobility and in-game activity are concerned. Therefore, to verify the assumptions, detailed studies of the parameters mentioned were carried out in the two established groups: the experimental and the control group.

At the initial stage of research (as a potential base), the level of motor skills was also assessed.

Tables 1–4 present the study results of: motor level, the level of knowledge on motor activities, technical skills and efficiency in terms of sportsmanship (in simulation games) of the two groups in two phases of research – the initial and final phase.

While analysing the results of the study of selected dispositions of a football player’s effective action, it should be noted that prior to the experiment, because of the structured selection of players, the two groups (experimental and control group) did not show any significant differences in these fields ($p > 0.05$).

Significant changes can be seen by analyzing the results obtained by players of both groups during the second test. The exception is the progression level of motor skills and the progression level of knowledge on the technical operation; no significant changes for Test 1 or 1 were noted – Tab. 1–2.

We may note other results when analyzing the level of values for technical skills (Tab. 3), for which there was a significant increase in Test 2 for the experimental group. The difference between the experimental and control group is significant at the level $a = 0.05$ [9].

The significant variation between the experimental and control group in motor (technical) activities is also confirmed by the progress among the groups that was made between the first and second tests. It can be noticed that in Test 2 the experimental group achieved significantly higher values than the control group ($0.0185 \times < 0.3046$), hence it could be said that the progression in results in the experimental group is significant. This fact confirms higher efficiency of the didactic progress with the use of the Life Kinetik method in the training process.

Interesting results can be seen when analysing the subjects’ progress in mastering (technical) motor activities in the simulation game (Table 4): these parameters indicate the level of mastery in the technical activities under conditions similar to the game proper. Although the second study showed no significant differences between the two groups [9], the difference between the results of the first and second tests are in favour of the experimental group, whose members have achieved significant

Table 1. Characteristics of motor ability level of studied groups in Test 1 and 2.

<table>
<thead>
<tr>
<th></th>
<th>Test 1</th>
<th></th>
<th>Test 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental group (pts.)</td>
<td>Control group (pts.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>45.94</td>
<td>46.14</td>
<td>47.68</td>
<td>48.37</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>6.71</td>
<td>7.02</td>
<td>6.44</td>
<td>6.42</td>
</tr>
<tr>
<td>Variability coefficient</td>
<td>14.60</td>
<td>15.22</td>
<td>13.51</td>
<td>13.27</td>
</tr>
<tr>
<td>Significance of differences between groups</td>
<td>0.484</td>
<td></td>
<td>0.441</td>
<td></td>
</tr>
<tr>
<td>Significance level of differences between Test 1 and Test 2 in given group</td>
<td>0.361</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Characteristics of knowledge level on technical activity of studied groups in Test 1 and 2.

<table>
<thead>
<tr>
<th>Test</th>
<th>Experimental group (pts)</th>
<th>Control group (pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>39.90</td>
<td>39.17</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>4.98</td>
<td>3.21</td>
</tr>
<tr>
<td>Variability coefficient</td>
<td>12.49</td>
<td>8.20</td>
</tr>
<tr>
<td>Significance of differences between groups</td>
<td>0.337</td>
<td></td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>45.42</td>
<td>44.69</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>5.65</td>
<td>5.57</td>
</tr>
<tr>
<td>Variability indicator</td>
<td>12.44</td>
<td>12.46</td>
</tr>
<tr>
<td>Significance of differences between groups</td>
<td>0.376</td>
<td></td>
</tr>
<tr>
<td>Significance level of differences between Test 1 and 2 in given group</td>
<td>0.004**</td>
<td>0.009**</td>
</tr>
</tbody>
</table>

** ** p < 0.01

Table 3. The level of significance of differences in evaluation of movement actions in isolated conditions (technical test) in the studied groups.

<table>
<thead>
<tr>
<th>Test</th>
<th>Experimental group (pts.)</th>
<th>Control group (pts.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>53.21</td>
<td>53.58</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>4.76</td>
<td>4.31</td>
</tr>
<tr>
<td>Variability coefficient</td>
<td>8.95</td>
<td>8.05</td>
</tr>
<tr>
<td>Significance of differences between groups</td>
<td>0.4208</td>
<td></td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>57.92</td>
<td>54.46</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>5.58</td>
<td>3.95</td>
</tr>
<tr>
<td>Variability coefficient</td>
<td>9.63</td>
<td>7.24</td>
</tr>
<tr>
<td>Significance of differences between groups</td>
<td>0.0474*</td>
<td></td>
</tr>
<tr>
<td>Significance level of differences between Test 1 and 2 in given group</td>
<td>0.01885*</td>
<td>0.3046</td>
</tr>
</tbody>
</table>

** ** p < 0.05

Table 4. The level of significance of differences in the evaluation of movement actions in simulation games in the studied groups.

<table>
<thead>
<tr>
<th>Test</th>
<th>Experimental group (pts.)</th>
<th>Control group (pts.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>52.46</td>
<td>52.88</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3.35</td>
<td>2.55</td>
</tr>
<tr>
<td>Variability coefficient</td>
<td>6.39</td>
<td>4.82</td>
</tr>
<tr>
<td>Significance of differences between groups</td>
<td>0.3677</td>
<td></td>
</tr>
<tr>
<td>Test 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic mean</td>
<td>56.46</td>
<td>54.42</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3.31</td>
<td>2.79</td>
</tr>
<tr>
<td>Variability coefficient</td>
<td>5.87</td>
<td>5.14</td>
</tr>
<tr>
<td>Significance of differences between groups</td>
<td>0.0587</td>
<td></td>
</tr>
<tr>
<td>Significance level of differences between Test 1 and 2 in given group</td>
<td>0.0030**</td>
<td>0.0861</td>
</tr>
</tbody>
</table>

** ** p < 0.01
progress in controlling motor activities \(0.0038^{**}\), the level of significance \(a = 0.01\). No significant differences were observed in the control group \(0.0038 <0.0861\). These results are very important in terms of application, for they show that mentalisation of the movement teaching process (using the Life Kinetik method) brings significant benefits to the trained players.

According to Williams and Ford [10], this way of teaching playing has impact not only on the realm of physicality but also on the mental sphere of the player, which greatly facilitates their decision-making processes.

Discussion

The above analysis of the results of the research shows, beyond any doubt, that the experimental teaching of motor activity, based on intellectualisation (that is, conscious participation of the player in training) deserves special attention, for it may increase the effectiveness of teaching and training players. This position was confirmed by Lutz [1], who sees in the Life Kinetik method not only a way to make training more attractive, but above all the possibility of activating mental processes and enhancing the creativity of the player. This paradigm results from the very specific nature of sports games, which, according to Duda [3] [11] and Panfil [4], is characterised by a high degree of mentalisation of the player’s actions; it is associated with situational operations of the player (alternativity of decision) based on the efficiency of thought processes. Thus, taking into account the fact that Life Kinetik shapes mental capacity (in that it fosters formation of special abilities to act) [1], it seems that one can greatly accelerate the process of learning a game. This position was confirmed in a significant way for learning football, where creative training [12] and in the application of complex methods (activation of the mental sphere) – [13] and in the decision-making practice, [14] enhanced efficiency was achieved. Also in other games (like basketball, handball, golf), taking into account human mental faculties in the Life Kinetik method significantly streamlines the process of educating players [15, 16].

The conclusion must be that the above information, confirmed by the results of the study, require special reflection on the intellectualisation of teaching football, and the unpopularity of using this type of methods in traditional training and the importance of creative activities for the effectiveness of the game allow for the adoption of a new direction in learning sports games [8]. This direction is consistent with teaching the game with understanding, which is opposed to the traditional (less efficient) approach to teaching team sports [17, 14]; thus, it sets a new paradigm in teaching sports games.

Conclusions

1. Proceedings in the Life Kinetik method, based on intellectually supporting the player movement actions, accelerate teaching elements of the football techniques.
2. Usage of the Life Kinetik method diversifies training, making football practice more attractive.
3. On the basis of the results obtained in the study and the importance of decision making processes in a sports game, it may be concluded that this line of research is an important source of progress in achieving a championship level in football players.

References

Application of life kinetik in the process of teaching technical activities to young football players

Address for correspondence
Assoc. Prof. Henryk Duda, Ph.D., professor extraordinarius
e-mail hendud@op.pl